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STORM RELATIVE ISENTROPIC MOTION ASSOCIATED WITH 
COLD FRONTS IN NORTHERN UTAH 

Kevin B. Baker, Kathleen A Hadley, Lawrence B. Dunn 

ABSTRACT 

One of the most difficult forecasting problems for Salt Lake City, Utah is the 
discrimination between wet and dry cold fronts as these weather systems move 
into the populated regions on the western slope of the Wasatch Mountains. The 
intent of this paper is to diagnose isentropic vertical motion associated with 
winter season cold frontal passages at Salt Lake City from a storm relative 
(Lagrangian) frame of reference in an attempt to discern wet from dry frontal 
passages. Lagrangian vertical motions associated with cold frontal passages are 
compared with conventional fixed frame of reference (Eulerian) isentropic 
motion. All wet frontal passages at Salt Lake City from November 1993 through 
January 1994 coincided with upward motion using the Lagrangian isentropic 
analysis scheme. Only 25 percent of the wet frontal systems were identified by 
upward motion using conventional Eulerian isentropic analysis. Modern 
computer technology allows forecasters to examine Lagrangian isentropic motion 
with PCGRIDDS software applications as was performed for this study. 

I. INTRODUCTION 

The distinction between cool-season dry 
and wet cold frontal passages is often 
difficult to forecast over northern Utah. 
Many cold fronts and their associated 
upper-level baroclinic zones move into the 
populated Wasatch Front from the west 
and northwest during the winter. These 
weather systems often produce little or no 
measurable precipitation as they cross the 
arid lands upstream from Salt Lake City, 
while precipitation is frequently observed 
as they approach the high terrain of the 
Wasatch Mountains. However, a significant 
percentage of these systems remain dry as 
they move through northern Utah. The 
development of a technique that allows for 
discrimination between precipitating and 
non-precipitating frontal systems is the 
focus of this study. 

1 

The approach taken here is the application 
of isentropic analysis to identify the 
vertical motion field associated with cold 
fronts as they move into northern Utah. 
Isentropic analysis is not new. Rossby et 
al. (1937) emphasized the advantages of 
isentropic flow patterns as "a fruitful 
synthesis of thermodynamic and 
hydrodynamic methods in air mass 
analysis." Rossby discusses the 
conservative properties of air parcels on 
isentropic surfaces. The intention of his 
argument was the recommendation that 
the meteorological community, and 
specifically the then U.S. Weather Bureau, 
prepare daily weather and forecast maps on 
isentropic surfaces, rather than pressure or 
height surfaces. Namias (1938, 1939) and 
Neamtan (1944) also demonstrated 
advantages of using isentropic surfaces 
rather than pressure surfaces. However, 



the 1950's saw a dramatic decrease in the 
use of isentropic analysis. The 
meteorological community focused its 
attention on forecasting pressure patterns 
on constant height surfaces (Danielsen 
1961; Moore 1988). 

More recently isentropic surfaces have 
been used in the interpretation of cloud 
and precipitation patterns associated with 
frontal systems. Relative-wind isentropic 
trajectories were used to explain the 
familiar comma cloud pattern of wave 
cyclones (Carlson 1980), and in the 
dynamic interpretation of clouds and 
precipitation patterns in extratropical 
cyclones (Browning 1990). Shutts (1991) 
analyzed frontal boundaries in Southern 
England using a vertical cross-section of 
isentropic surfaces and normal wind 
components. 

Probably due to the ease in recognizing 
frontal boundaries, isentropic analysis has 
gained considerable favor by those studying 
the movement and development of frontal 
systems (Anderson 1984; Moore 1988; 
Sanders 1993). "Southerly busters" in 
Australia were determined to be 
orographically initiated by using low-level 
isentropic coordinates (Coulman et al. 
1984). The research program Fronts 87 
analyzed mesoscale frontal dynamics on 
various isentropic surfaces (Thorpe 1991). 

The 1990's have seen an explosion of 
meteorological investigations on isentropic 
surfaces. The recent access to high speed 
computers and model gridded data by 
operational forecasters has allowed for the 
direct application of isentropic theory to 
daily weather forecasting (Dunn 1993; 
Zubrick and Thaler 1993; Shea and 
Przybylinski 1993). 

The computer software known as 
PCGRIDDS is currently being used by 
many National Weather Service Forecast 
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Offices to enhance forecasting techniques 
through the use of model gridded data. 
The ease of use and the data density 
provided by model grids has brought 
application of isentropic analysis back into 
the realm of operational forecasting. The 
Washington, D.C. (Sterling) NWS forecast 
office regularly uses a program that 
overlays constant mixing ratio lines on 
isentropic surfaces to forecast precipitation 
areas (Zubrick and Thaler 1993). The St. 

,. Louis NWS Forecast Office has used 
PCGRIDDS and isentropic surfaces to 
analyze vertical motions associated with 
winter storms (Shea and Przybylinski 
1993). At the Sterling office, pressure and 
interpolated winds on isentropic surfaces 
were used to forecast an early season 
snowstorm (Gates and Zubrick 1993). The 
Denver NWS Forecast Office uses an 
advanced prototype system (MAPS) with a 
hybrid isentropic/sigma coordinate system 
(Smith and Benjamin 1993) to derive 
isentropic potential vorticity fields to 
forecast developing systems. 

Frontal systems and associated synoptic-
. scale motions produce the majority · of 
precipitation during the winter season at 
many western U.S. mid-latitude locations, 
including Salt Lake City. There have been 
many refmements to the Norwegian 
cyclone model (Bjerknes 1919; Bjerknes 
and Solberg 1922) over the years. 
Anafronts and katafronts, first proposed by 
Bergeron (1937), expanded on the original 
~orwegian model. Anafronts have 
descending cold and ascending warm air 
currents where the cold air behind the 
front advances faster than the warm air 
recedes, while katafronts have descending 
air on both sides of the front where the 
warm air ahead of the front recedes faster 
than the cold air advances. The anafront 
model best describes the heavier 
precipitation events, while the katafront 
model best represents the dry frontal 
passages. 



Browning and Monk (1982) used the 
visualization of "conveyer-belts" in their 
refmements to the conceptual model of 
anafronts and katafronts. In the anafront, 
the warm southerly conveyor-belt slopes 
rearward over the advancing cold air 
behind the surface cold front. In the 
katafront or "split-front", the conveyor-belt 
slopes forward away from the surface cold 
front. The result is an upper-level front 
out ahead of the surface cold front. 
Precipitation is often associated with the 
upper-level front, while the surface front is 
either completely dry or produces only 
light showers. Hobbs et al. (1990) 
suggested a similar model for cold fronts 
aloft. 

Winter precipitation at Salt Lake City is 
often associated with the passage of an 
anafront, where the heaviest precipitation 
falls in the colder air behind the front. 
Little, if any, precipitation occurs ahead of 
the boundary. Within the conveyor-belt 
perspective the wet fronts at Salt Lake City 
fall into the rearward sloping type. 
Katafronts are nearly always dry events at 
Salt Lake City, with subsidence associated 
with the surface cold front, while the dry 
low-level conditions in the warm-sector 
preclude precipitation from the upper-level 
front. The use of storm-relative isentropic 
analysis in this study is aimed at 
discriminating rearward sloping ascent 
associated with wet anafronts from the 
descent associated with katafronts. Other 
frontal types, such as occlusions, have 
generated major precipitation events, but 
are often more difficult to diagnose using 
storm-relative isentropic analysis, and will 
not be considered in this study. 

II. DATA AND METHODS 

The concept of "relative wind" isentropic 
flow (Carlson 1991) has revealed sharply 
defmed boundaries and areas of vertical 
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motion through frontal systems. Isentropic 
analysis on a fixed (Eulerian) surface 
depicts upward motion in areas of warm 
advection, but usually fails to capture 
upward motion in regions of neutral or cold 
advection. Thus, isentropic analysis in the 
vicinity of cold fronts may benefit by using 
a storm-relative approach. The "relative 
wind" isentropic analysis technique places 
the frame of reference with the weather 
system (Lagrangian), subtracting out the 
phase speed of the storm. Proper 
calculation of storm phase speed requires a 
steady state situation in which the storm 
exhibits little or no acceleration (Green et 
al. 1966). To a rough approximation, the 
relative wind streamlines act as 
trajectories. 

A total of 20 frontal passages were 
reviewed from November 1993 through 
early February 1994. The weather 
observations (SAO's) at Salt Lake City 
International Airport were used to verify 
the time of frontal passage at the surface. 
The PCGRIDDS data from the Eta model 
were saved from the model run closest and 
prior to the frontal passage. Isentropic 
surfaces, 8, were created for the initial 
condition (0-hour), 6-hour forecast, and 12-
hour forecast of the model covering the 
time of frontal passage. The isentropes 
were constructed every 5K, covering a 
pressure range from about 700 mb to 400 
mb. Isentropes below 700mb were avoided 
because of intersection with the high 
model terrain located over the eastern 
Great Basin and Colorado Rockies. 

The phase speed and direction of the 
weather system was calculated by averaging 
the 500 mb trough speed and direction and 
the 700 mb frontal speed and direction 
between the Eta Oh and 12h forecast 
charts. Locating the 700 mb frontal 
position was often subjective, but every 
attempt was made to choose the position 
along the leading edge of the thermal 



gradient. Using PCGRIDDS, the mean 
velocity vector (phase speed) of the system 
was subtracted from the ambient wind 
field, and resultant winds (Lagrangian) 
were plotted on the isentropic surface. 
Pressure advection was calculated from the 
Lagrangian winds, and overlaid on the 
isentropic surface chart. 

Vertical motion on an isentropic surface is 
defined by the following equation (Carlson 
1991) in an adiabatic environment: 

Equation 1 

Terms: 1 2 3 

The term on the left-hand side of Eq. 1 
(Term 1) is the vertical motion on an 
isentropic surface with negative values 
implying ascent. The second term in Eq. 1 
accounts for the local height tendency or 
pressure tendency on an isentropic surface 
(Moore 1988). This term is assumed to be 
small for a steady state system, but can be 
significant in a developmental or decaying 
weather system. The third term is the 
pressure advection on an isentropic 
surface. In a diabatic environment, an 
additional term must be added to the right
hand side of Eq. 1. This term would 
account for diabatic heating processes such 
as latent heat release in a saturated 
environment and heating from the earth's 
surface. This additional term is not 
considered here. However, in a saturated 
environment the ascent calculated in Eq. 1 
would have to considered . a lower limit 
since latent heating would increase the 
upward motion. 

In a Lagrangian frame of reference, the 
phase speed of the storm (C) is subtracted 
from the actual wind (V), and the velocity 
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vector in Eq. 1 becomes (V-C). If the 
system is assumed to undergo little or no 
change in intensity term 2 may be 
considered small. The resulting equation 
for omega on an isentropic surface 
becomes: 

Equation 2 

The graphics generated in this study for 
each case include overlays on an isentropic 
surface of Lagrangian winds, pressure, and 
pressure advection. The pressure 
advection is calculated using the 
Lagrangian velocity vector (V-C). The 
vertical motion can be calculated directly 
from the pressure advection field as 
represented in Eq. 2. 

The procedure for this process was 
simplified by the development of ·a 
FORTRAN computer program and several 
PCGRIDDS macros. The first macro· shows 
the 500 mb height and absolute vorticity 
charts at 6 hour intervals to allow the 
forecaster to determine the phase speed .:of 
the troughs. A second macro displays the 
700 mb height and temperature fields at' 6 
hour intervals to determine the frontal 
phase speed. The system phase speed is 
calculated from the average phase speeds 
of the 500 mb and 700 mb fields. The 
third macro displays the 700 mb e field to 
determine which isentropic surfaces to 
diagnose, keeping above model terrain. 
The FORTRAN program prompts the user 
for the mean forecast phase speed, as just 
described. It then converts these variables 
into the units required by PCGRIDDS and 
inputs the phase speed data into a 
PCGRIDDS command file. This command 
file displays the vertical motion due ·to 
storm-relative motions on an isentropic 



surface. The e surfaces to be analyzed 
must be created in PCGRIDDS prior to 
running the command file produced by 
FORTRAN. For comparison, another 
command file is available to display 
Eulerian isentropic vertical motion. With 
a little experience, the entire process can 
be completed in less than two minutes. 

ill. RESULTS 

Of the 20 frontal passages examined in this 
study, 8 cases verified measurable 
precipitation at Salt Lake City. Of these 8 
wet events, Lagrangian isentropic vertical 
motion was upward in all 8 cases. Within 
an Eulerian frame of reference, upward 
motion was forecast in only 2 of the 8 
events. Of the 12 cases where no 
measurable precipitation (dry front) was 
recorded, downward or zero vertical motion 
was forecast nine times using Lagrangian 
isentropic analysis. From the Eulerian 
perspective, 10 cases out of 12 showed zero 
or downward vertical motion. Using 
Lagrangian winds to calculate vertical 
motion on isentropic surfaces, no wet 
events were missed, and only three of the 
20 cases (all dry events) were forecast 
incorrectly. 

The heaviest precipitation event occurred 
on 12 December 1993 and resulted in 0.61 
inches. The surface cold front passed Salt 
Lake City about 1000 UTC on the 12th, 
with a system phase speed estimated from 
290o at 16 m s-1. 

The 6-hour forecast charts from the Eta 
model valid at 0600 UTC 12 December are 
shown in Figs. la through lc. The storm 
relative winds, pressure, and pressure 
advection fields are depicted on the 305K 
isentropic surface in Fig. la. The actual 
winds (Eulerian), pressure, and pressure 
advection fields on the 305K isentrope are 
shown in Fig. lb. The relative humidity 
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field for the same isentropic surface is 
presented in Fig. 1c. 

The pressure advection, which 1s 
equivalent to (-1 * omega), is displayed 
with solid lines for upward motion 
(positive) and dashed lines for downward 
motion (negative). Upward motion is 
evident over eastern Nevada and western 
Utah (Fig. la), and the relative humidity is 
greater than 90 percent (Fig. lc). The 
strongest upward motion was denoted by 
the "bulls-eye" over east-central Nevada 
and over southern Arizona. Dynamic lift 
and abundant moisture were evident at 
midlevels in the atmosphere over Salt Lake 
City. The lower 300K isentropic surface 
was chosen at the 12-hour forecast time 
(1200 UTC) as colder air began to move 
across Utah from the west. Figs. 2a 
through 2c are similar to Fig. la through 
lc, but are valid 6 hours later for the 300K 
isentrope. The Lagrangian vertical motion 
field predicted upward motion over western 
Utah (Fig. 2a) with the maximum ascent 
over northwest Utah. As in Fig. lh;, the 
Eulerian vertical motion field (Fig;' 2b) 
showed descending motion. 

A comparison between Figs. la and lb, as 
well as 2a and 2b, show a major difference 
between vertical motion computations. 
The values in Figs. 1a and 2a were greater 
than 2 J.lb s-1 with upward motion, while 
the Eulerian isentropic graphics (Figs. lb 
and 2b) indicated descending motion. In 
this case, the Lagrangian isentropic motion 
correlated well with the actual weather 
situation. 

Another frontal passage that verified 
measurable precipitation is displayed in 
Figs. 3a through 3c. The event occurred 8 
February 1994, and was different than the 
previous case in that the system was 
splitting as it moved inland from the 
Pacific Ocean. The cold front passed Salt 
Lake City around 0800 UTC on the 8th, 



and dropped 0.35 inches of precipitation. 
The phase velocity was calculated to be 
from 320o at 12 m s-1

, but this must be 
considered a rough estimate as the system 
split an.d slowed. 

The charts (Figs. 3a through 3c) are valid 
for 1200 UTC on the 8th with a format 
similar to Figs. 1a through 1c. The upward 

. motion shown on the Lagrangian. isentropic 
chart is near 1 ,ub s-1 (Fig. 3a), but the 
Eulerian chart indicated weak downward 
motion (Fig. 3b). The forecast relative 
humidity was near 90 percent (Fig. 3c). 

A case of a dry frontal passage is presented 
in Figs. 4a through 4c. The case occurred 
on 11 January 1994, with the cold front 
passing Salt Lake City around 2100 UTC. 
The phase yelocity was from 340o at 14m 
s-1

• The Lagrangian isentropic motion was 
computed as downward at greater than 1 
,ub s-1 (Fig. 4a), and the Eulerian motion 
was weakly downward with a value near 
zero (Fig. 4b). The forecast relative 
humidity was near 90 percent (Fig. 4c), 
thus a nearly saturated airmass was 
expected with the frontal passage. The 
high humidity could have argued for a wet 
forecast without a thorough investigation 
of the vertical motion field. 

The possibility of error resulting from 
inaccurate phase speed calculations were 
explored by varying the F,ORTRAN 
program inputs. Little change in results 
was seen with a slow moving system (15 
knots or less) when the direction was . . 
varied by ± 10 degrees. With a fast moving 
system the direction of movement is much 
more important, and more precise 
approximation of phase speed is required. 

IV. DISCUSSION AND CONCLUSION 

Pressure is proportional to temperature on 
an isentropic surface (Moore 1988), and 
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warm advection (positive pressure 
advection) indicates upward motion. One 
of the disadvantages of Eulerian isentropic 
analysis is the poor depiction of upward 
motion behind anafronts where 
precipitation frequently occurs. The region 
behind the anafront is often characterized 
by cold advection and downward motion 
from the Eulerian perspective. Lagrangian 
isentropic analysis has shown better results 
at identifying post-frontal areas of 
precipitation and upward motion. 
Comparing Fig. 2a with 2b (wet frontal 
system) illustrates the differences. The 
Lagrangian perspective showed upward 
motion at Salt Lake City (warm advection) 
while the Eulerian perspective had weak 
downward motion (cold advection). 

Storm relative (Lagrangian) isentropic 
analysis has shown promising results, 
improving over the conventional fixed
frame (Eulerian) isentropic analysis 
technique. Centers of strongest upward 
motion were often co-located with areas of 
maximum precipitation. 

The type of front is an important 
consideration for forecasting precipitation 
at Salt Lake City. The isentropic analysis 
technique demonstrated in this. paper 
should provide forecasters with a new tool 
for examining frontal structure and 
associated vertical motions. Upon 
determining the front type, the forecaster 
. can apply the precipitation patterns 
associated with the conceptual frontal 
models to the actual meteorological 
situation. 

Although only 20 cases from a four month 
period have been examined, the results are 
quite encouraging. Given the difficult 
problem of discriminating between wet and 
dry cold fronts in the complex terrain of 
northern Utah, the calculation of 
Lagrangian vertical motion on isentropic 
surfaces correctly identified all 8 wet 
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events, and 9 of the 12 dry events. The 
FORTRAN program and PCGRIDDS 
macros developed allow the forecaster to 
interactively apply this technique in a 
matter of minutes. Extension of this study 
is required to determine its utility in the 
warm season, and to obtain more cases 
from the next cool season. 
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)ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= Of 12::FILE=de129300.etx 
93/12/12/ 0--SSBC -5.6 VGRD 

ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--ADVT PRES KEPV CI-3 DNEG& 

ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= Of 12::FILE=de129300.etx 
93/12/12/ 0--PRES CI40& 

Figure 1a. Early Eta 6-hour forecast valid at 0600 UTC 12 December 1993, 
Lagrangian case, wind, pressure, pressure advection, on a 305K 
isentropic surface. 



ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= 
93/12/12/ 0--WIND 

ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--ADVT PRES WIND C1-3 DNEG& 

ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--PRES CI40& 

Figure lb. As in Figure la except for Eulerian case. 
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ETAX:LVL=I305:LYR=1000/ 500:FHR= 6 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--RELH 

Figure lc. As in Figure la except for relative humidity (tens of%). 



ETAX:LVL=I300:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--SSBC -5.6 VGRD 

ETAX:LVL=I300:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--ADVT PRES KEPV CI-3 DNEG& 

ETAX:LVL=I300:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--PRES CI40& 

Figure 2a. Early Eta 12-hour forecast valid at 1200 UTC 12 December 1993, 
Lagrangian case on a 300K isentropic surface, units as in 
Figure 1a. 



500:FHR= 12 :FHRS= 12::FILE=de129300.etx 

ETAX:LVL=I300:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=de129300.etx 
93/12/12/ 0--ADVT PRES WIND C1-3 DNEG& 

ETAX:LVL=I300:LYR=1000/ 500:FHR= 12 :FHRS= Of 12::FILE=de129300.etx 
93/12/12/ 0--PRES CI40& 

Figure 2b. As in Figure 2a except for. Eulerian case. 
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ETAX:LVL=I300:LYR=l000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=del29300.etx 
93/12/12/ 0--RELH 

Figure 2c. As in Figure 2a except for relative humidity (tens -of%). 



ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=FE089412.ETX 
94/ 2/ 8/12--SSBC -9.1 VGRD 

ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=FE089412.ETX 
94/ 2/ 8/12--ADVT PRES KEPV CI-3 DNEG& 

ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=FE089412.ETX 
94/ 2/ 8/12--PRES CI40& 

Figure 3a. Early Eta 12-hour forecast valid at 0000 UTC 9 February 1994, 
Lagrangian case on a 295K isentropic surface, units as in 
Figure la. 



ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= Of 12::FILE=FE089412.ETX 
94/ 2/ 8/12--ADVT PRES WIND C1-3 DNEG& 

ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=FE089412.ETX 
94/ 2/ 8/12--PRES CI40& 

Figure 3b. As in Figure 3a except for Eulerian case. 
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Of 12::FILE=FE089412.ETX 

Figure 3c. As in Figure 3a except for relative humidity (tens of%). 



ETAX:LVL=I295:LYR=1000/ SOO:FHR= 12 :FHRS= 0/ 12::FILE=JA119412.ETX 
94/ 1/11/12--ADVT PRES KEPV C1-3 DNEG& 

ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=JA119412.ETX 
94/ 1/11/12--PRES CI40& 

Figure 4a. Early Eta 12-hour forecast valid at 0000 UTC 12 January 1994, 
Lagrangian case on a 295K isentropic surface, units as in 
Figure 1a. 



, i ETAX: LVL=I295: LYR=1000 / 500: FHR= 12 : FHRS= 12: : FILE=JA119412. ETX 
94/ 1/11/12--PRES CI40 

ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=JA119412.ETX 
94/ 1/11/12--WIND BARB& 

ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=JA119412.ETX 
94/ 1/11/12--PADV DNEG CINX& 

Figure 4b .. As in Figure 4a except for Eulerian case. 
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ETAX:LVL=I295:LYR=1000/ 500:FHR= 12 :FHRS= 0/ 12::FILE=JA119412.ETX 
94/ 1/11/12--RELH CINX 

Figure 4c. As in Figure 4a except for relative humidity (tens of%). 
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PROGRAM WRITTEN BY KATHLEEN HADLEY, MARCH 1994 
METEOROLOGIST/INTERN AT THE NATIONAL WEATHER 
SERVICE FORECAST OFFICE IN SALT LAKE CITY, UT. 

THIS PROGRAM PROMPTS FOR THE INPUT OF STORM 
RELATIVE MOTION AND THEN CREATES A COMMAND FILE 
TO RUN A PCGRIDS APPLICATION THAT WILL ADVECT 
THE STORM MOTION ONTO AND ISENTROPIC FIELD. 

AT THE TIME THE PROGRAM WAS WRITTEN, LIMITATIONS 
TO PCGRIDDS REQUIRED THAT THE ISENTROPIC FIELD BE 
CREATED PRIOR TO RUNNING THIS PROGRAM. 

PROGRAM VARIABLES: DD = DIRECTION, FF = SPEED 
DDRAD = THE DIRCTION IN RADIANS 
FFMETER = THE SPEED IN METERS PER SECOND 
U & V = COMPONENTS OF THE DDFF 
INTU & INTV = ROUNDED INTEGERS OF THE U AND V 

COMPONENTS USED WHEN THE VALUES 
ARE -10 OR LESS TO MAINTAIN AN 
OUTPUT FIELD OF ONLY 4 CHARACTERS 
OR SPACES (REQUIRED BY PCGRIDDS) 

INTEGER DD*4, FF*4, INTU*4, INTV*4 
REAL DDRAD*8, FFMETER*8, U*8, V*8 
CHARACTER ANSWER*1 
PARAMETER (PI = 3.14159) 
OPEN (UNIT=20, FILE='ISES.CMD', STATUS='NEW') 

WRITE (*,2) 
2 FORMAT ( I 1 I ) 

1 WRITE (*,11) 
11 FORMAT ('1 ENTER STORM RELATIVE DIRECTION USING COMPASS',/, 

+ POINTS (i.e. A STORM MOVING FROM THE WEST',/, 
+ WOULD BE ENTERED 270) .... '\) 
READ (*,5) DD 

5 FORMAT (I4) 
WRITE (*,2) 
WRITE (*,12) 

12 FORMAT ('1 ENTER STORM RELATIVE SPEED IN KNOTS .... '\) 
READ (*,5) FF 
WRITE (*,2) 

10 FORMAT (////////////////) 
WRITE (*,15) FF, DD 

15 FORMAT ( 1 1 YOU ENTERED A STORM RELATIVE FLOW OF' ,I4, 1 

KNOTS',/, 
+ FROM A DIRECTION OF',I4, 1 DEGREES.',///) 
WRITE (*,*) ' IS THIS DATA CORRECT? TYPE N OR n TO 

RE-ENTER, I 

WRITE (*,*) 1 OR HIT ANY OTHER KEY TO CONTINUE.' 
READ (*,20) ANSWER 

20 FORMAT (A1) 
WRITE (*,10) 
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WRITE (*,10) 
IF (ANSWER.EQ. 'N':OR.ANSWER.EQ. 'n') GOTO 1 

c 
C CONVERSION TO METERS/SEC AND RADIANS 
c 

c 

FFMETER = FF * .515 
DDRAD = (DD * PI)/180. 

C DETERMINE THE U AND V COMPONENTS 
c 

c 

U = (-FFMETER) * SIN(DDRAD) 
V = (-FFMETER) * COS(DDRAD) 

C DETERMINE WHICH WRITE ROUTINE TO USE 
c 

c 

c 

c 

c 

IF(U.LE.-10.AND.V.LE.-10) GOTO 133 

IF(U.LE.-10) GOTO 143 
IF(V.LE.-10) GOTO 153 

WRITE (20,30) U, V 
30 FORMAT ('LOOP',/, 'BARB',/, 'CONT SSBC',F5.1, 1 UGRD',j, 

+ 1 SSBC 1 ,F5.1,' VGRD',/, 'ADVT PRES KEPV CI-3 DNEG/' 
+ ,/,'PRES CI40/',/, 'ENDL') 
CLOSE (UNIT=2 0) 
GOTO 100 

133 INTU = NINT(U) 
INTV = NINT(V) 
WRITE (20,3j) INTU, INTV 

33 FORMAT ('LOOP',/, 'BARB',/,'CONT SSBC 1 ,I5, 1 UGRD',/, 
+ 1 SSBC',I5, 1 VGRD',/, 'ADVT PRES KEPV CI-3 DNEG/ 1 

+ ,/,'PRES CI40/',/,'ENDL') 
CLOSE(UNIT=20) 
GOTO 100 

143 INTU = NINT(U) 
WRITE (20,34) INTU, V 

34 FORMAT ('LOOP',/, 'BARB',/, 'CONT SSBC',I5,' UGRD',/, 
+ 'SSBC',F5.1,' VGRD',/, 'ADVT PRES KEPV CI~3 DNEG/ 1 

+ 'I' I PRES CI4 0 I I 'I' I ENDL I ) 

CLOSE (UNIT=2 0) . 
GOTO 100 

153 INTV = NINT(V) 
WRITE (20,35) U, INTV 

35 FORMAT (I LOOP I 'I' I BARB I 'I' I CONT SSBC I 'F5. 1' I UGRD I 'I' 
+ 1 SSBC 1 ,I5, 1 VGRD',/, 'ADVT PRES KEPV CI-3 DNEG/ 1 

+ ,/''PRES CI40/ I,/' 'ENDL') 
CLOSE (UNIT=2 0) 
GOTO 100 

100 CONTINUE 
END 
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